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,4 hvtract —In this paper we report on progress towards developing AM

Iighhvave Iinks for the transmission of multiple TV signals. While the

signal quality objectives and transmission distances are appropriate for the

CATV trmrking application, the technology is ultimately expected to have

applicability to the distribution of Yideo signals in the subscriber loop.

Highly linear 1.3 pm DFB lasers, designed expressly for analog require-

ments, were used to transmit 42 continuous wave carriers according to the

standard U.S. CATV frequency plan. For our best lasers, when evaluated

over 12 km of fiber, carrier to noise, composite second-order distortion,

and composite triple beat were >52 dB, >70 dBc, and >70 dBc,

respectively. The relationship between measurements with CW earners

and actual video signals is discussed. System design rules are offered.

Properties that lead to superior analog performance are discussed. Data

from >700 links indicate that composite third-order distortion generally

scales with product count but that composite second-order distortion has a

significant frequency-dependent component.

I. INTRODUCTION

A S LIGHTWAVE technology has begun to penetrate

closer to the subscriber, there has been an intensive

interest in the cost-effective transmission of large numbers

of TV signals. Centrally switched wide-band distribution

systems [1]–[5] possess many attractive features but have

initially proven too expensive for widespread deployment.

Broadcast architectures have been proposed and/or

demonstrated using digital [6], subcarrier FSK [2], [3], [7],

PSK [8], FM [9], [10], and AM [11] signal formats. Each

option may be judged according to the following criteria:

1)

2)

3)

4)

5)

cost

compatibility with existing equipment

signal quality

possibility of gradual introduction (entry strategy)

flexibility (ease of upgrade).

Digital systems typically suffer high costs associated with

the conversion of the signal to the required AM format at
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the receiver. While such costs can be ameliorated to some

extent by the use of time division multiplexing, inflexibility

in the provision of additional channels may arise. Subcar-

rier FM and FSK systems are, in some embodiments,

likewise subject to the high costs of converting each indi-

vidual channel to AM. Again, conversion costs may be

reduced if the signal is transported without demodulation

directly to the subscriber. Once on the subscriber’s

premises, it is generally necessary to recover only one AM

channel per television receiver. While there are no obvious

technical deficiencies associated with such a scheme, high

conversion costs are avoided only if the distribution part

of the system is deployed simultaneously with the trunking

or feeder plant. A more graceful strategy for introduction

of lightwave technology into the loop is to begin the

deployment in those parts of the system where the cost is

shared by numerous subscribers. Introduction into the

most cost-intensive parts of the plant occurs when suffi-

cient production experience has enabled the supplier to

achieve satisfactory costs.

The principal disadvantage of AM transmission has

been the fragility of the signal with respect to noise and

distortion. Until very recently, nonlinearities in the laser

sources prevented the transmission of a sufficient number

of channels with adequate signal quality. A number of

workers have endeavored to evade this restriction through

the use of linearizing techniques [12] –[15]; however the

additional complication and cost may be disadvantageous

if a suitably linear laser is available. In this paper we

describe a system in which 40-80 channels of AM-VSB

NTSC signals can be transmitted over 12 km of fiber, wi~th

negligible impairment in the perceived quality of the sig-

nal, The modulation index is adjusted so that the carrier to

noise ratio (C/N) always exceeds 50 dB. The transmitter

makes use of a highly linear 1.3 pm DFB laser in conjunc-

tion with suitable ancillary circuitry. Numerous systems of

this type have been deployed in commercial CATV trunk-

ing applications, and they are gai nktg widespread accep-

tance in the industry. The organization of this paper is as

follows. In Section 11 the architecture of the link is dis-

cussed. Included is a discussion c~f optical reflections as

0018-9480/90/0500-0483 $01.00 01990 IEEE



4x4 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQLTES, VOL. 38, NO. 5, MAY 1990

well as a comparison of test results using CW carriers and

live TV signals. Section III contains a description of the

devices. Consideration is also given to laser packages and

optical isolators. Finally, both the current status and the

potential evolution of analog technology are summarized

in Section IV.

II. CATV SYSTEM CONSIDERATIONS

A. Link Architecture

A simple model of a fiber-optic CATV trunk system is

shown in Fig. 1. The head-end electronics are modeled as

N (N being the number of channels) video modulators,

each converting a baseband video and audio signal to a

AM-VSB signal at a frequency fn.The individual outputs

are passively combined in several stages to form the com-

posite spectrum. A typical head-end spectrum begins at 55

MHz (channel 2) and may progress to frequencies as high

as 550 MHz for an 80 channel system.

Several CATV frequency plans are in use in the United

States, all having the same basic spectral structure depicted

in Fig. 2. Unmodulated carriers, as generated by the most

commonly used test instrumentation, are shown represent-

ing the carrier frequency of each CATV channel. Carriers

are spaced at 6 MHz increments with predetermined gaps

for FM broadcast and certain communication channels.

As a broad-band transmission vehicle, AM links for

CATV applications are characterized by the following

figures of merit [16]:

C/N Carrier to noise ratio: the ratio of the peak

carrier power for a given channel to the noise

floor near the carrier, assuming a noise band-

width of 4 MHz.

CTB Composite triple beat: the ratio of the peak

carrier to the peak power in the composite

third-order intermodulation tone, which, for

the frequency plan used in these studies, occurs

at the carrier frequency.

Cso Composite second order: the ratio of the peak

carrier to the peak power in the composite

second-order intermodulation tone. For stan-

dard and IRC (incrementally related carriers)

frequency plans, the CSO appears at the carrier

frequency + 1.25 MHz. For the HRC (harmon-

ically related carriers) frequency plan, the CSO

beats appear under the carriers, as with CTB.

We will examine C/N and intermodulation performance

separately, because the noise performance of most compo-

nents is well understood and may be accurately modeled,

whereas intermodulation performance must be character-

ized on each individual transmitter/receiver.

B. C/N — Noise Sources in a Fiber-Optic AM Link

A simplified model [17] of the broad-band link is shown

in Fig. 3, for noise performance considerations. There are

three dominant sources of noise, all of which are modeled

as current sources.

t +4y _
Laser

?$4

Transmitter
Coax

RF Modulator Optical
Receiver

I

Headend
:Outside~ HUB ~Trunk
: Plant : ,

,t 1 ,, I

Fig. 1, Schematic for a CATV system utdlzmg an AM fiber trunk

1) Front-End Noise: For this analysis, the noise power

from the preamplifier is converted to equivalent input

current and expressed in pA/(Hz)l/2. In general, the

equivalent input noise current is not flat across the band

and will vary with temperature and load conditions. The

noise performance of the preamplifier used in these

broad-band applications is typically in the range 12-16

pA/(Hz)l/2.

2) Shot Noise: The quantum or shot noise, 1,, formed

in an ideal square law detector is given by

(1)

where e is the electronic charge and IP is the detected

current. Over the frequency range of interest, the shot

noise is essentially flat.

3) Relative Intensity Noise: The final dominant noise

source in the AM system is laser intensity noise as charac-

terized by RIN in dB/Hz [18]. The apparent intensity

noise at the receiver consists of noise intrinsic to the laser

(quantum effects in ellectron to photon conversion, mode

partitioning, etc.) and extrinsic effects which may be caused

by reflections and dispersion. Reflection effects are dis-

cussed in subsection II-E. For AM trunking applications

an RIN of < – 150 dB/Hz is normally required.

C. Intermodulation Noise — CTB and CSO

The theory and mathematics of intermodulation noise

are well developed [19], having become particularly impor-

tant in CATV applications [20] when channel loads on

coaxial cable exceed the original 13 off-air channels.

The linearity of lasers is discussed extensively in subsec-

tion III-A. The applied modulation current to the laser is

given by

I(t)=Io+(Io– Ith) f micos(2nft+ @i) (2)
,=1

where 10 is the dc bias current, lti is the threshold current

of the laser, m, is the modulation index for the i th carrier,

and +, is the phase of the i th carrier. The light output,
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Fig. 3. Equivalent circmts for transmitters and receivers.

L(t), in response to the modulation is given by

dnL

L(t) =Lo+ ;
(-)
+[1(1) -l.]” (3)

,=1 .

where Lo is the power at the dc bias current. If terms

beyond i=3are negligible, wewill expect power to appear

at ~j * ~, and ~, *f, i fk. In addition, other elements in
the system may have nonlinear transfer characteristics
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such as the laser driver, the p-i-n detector, and receiver

amplifiers. We find, however, that typical links are domi-

nated by laser nonlinearity.

Each composite second- orthird-order beat is made up

of tones of equal amplitude assuming that the generating

spectrum is flat. If the nonlinearity is frequency dependent
[21], [22], the contributions from each tone can still be

equal, provided that the amplitude of the tone depends

only on the resultant frequency and not on the individual

frequencies of which it is composed. If we assume that the

tones are uncorrelated in phase and that the nonlinearity is

frequency independent, then the expected channel to chan-

Fig. 4. 10 log (number of second-order intermodulation products) for a
42 channel system.

nel relative differences in intermodulation performance

will follow a 10 log ( NO) scaling, where No is the number of

second- or third-order products. In Figs. 4 and 5, we show

a plot of the predicted relative second-order and third-order

intermodulation performance for 42 CATV channels. It

can be seen that CSO performance is expected to be most

critical at both the high and low ends of the band, where

product counts are highest, whereas CTB is most signifi-



486 IEEE HL4NSACTIONS ON MICROWAVL THEORY AND ‘rECHNIQIJES, VOL. 38. NO. 5, MAY 1990

Fig. 5

28

26

24 d

22

20

18

16

14

12

10

8

:o~
20 40 60 80

In-Band Range

CATV Channel
CATV TRUNK LIGHTWAVE SYSTEM

Intermodulation Analysis - Composite Triple Beat (CTB)

10 log (number of third-order intermodulation products) for a
42 channel system.

cant in the middle of the band, where third-order product

counts are highest.

D. System Performance

A typical hardware implementation for CATV applica-

tions includes a laser transmitter with associated power

supplies, bias circuits, thermoelectric cooler control cir-

cuits, and RF drive stages. The optical detector (p-i-n),

preamplifier, postamplifier, and power supply are mounted

in a rugged outside cable plant housing suitable for general

deployment in CATV networks.

A diagram of a typical evaluation arrangement for the

link is shown in Fig. 6. The band-pass filter, amplifiers,

and variable attenuators are used to optimize the perfor-

mance of the spectrum analyzer with respect to linearity

and noise contribution (i.e., dynamic range). Using

NCTA-recommended procedures, typical results shown in

Fig. 7 were achieved. Data from a typical 42 channel link

with out-of-plant losses of 5 dB (12 km fiber) are analyzed

in Table I, where all the noise contributions are reduced to

an equivalent input noise current. Performance superior to

the typical values summarized in Table I can be obtained
with our best lasers. For the best links, we have achieved

C/N >52 dB, CSO >70 dBc, and CTB >70 dBc. When

the matrix generator in Fig. 6 is replaced by an actual

CATV head end with live video modulation, the carrier

amplitude is reduced by an average of 6 dB. This results in

an improvement in measured CTB of approximately 12 dB

and an improvement in CSO of approximately 6–10 dB.

Because these levels of performance are well below the

level at which an impairment is typically perceived, the

modulation index of the device is usually increased to

provide a more optimum trade-off of C/N and intermodu-

lation distortion.

E. Enhanced Noise from Optical Reflections

The adverse effects of optical feedback on semiconduc-

tor lasers has been studied intensively with respect to

degradations in the optical spectrum [23] and noise perfor-

mance [24], [25]. Reference [25] is particularly useful in

that the degradation of RIN as a function of the polariza-

tion of the optical feedback is also explored. Potential

sources of reflections include the laser package optics, the

optical isolator, connectors, splices, the receiver, and

Rayleigh backscattering from the fiber itself [26]. The

effect of optical feedback on laser relative intensity noise

does not become negligible until a total return loss of >50

dB is obtained when typical distances to the source are of

the order of several meters [25]. In this context, return loss

is referenced to the power emerging from the laser facet

and includes coupling and other losses. In addition, the

noise spectrum acquires periodic peaks at frequencies cor-

responding to an inverse round-trip time between the laser

and the source of the optical feedback. This phenomenon

is shown in Fig. 8(a), where the periodicity of the peaks in

the noise spectrum corresponds to the location of an

optical isolator having a return loss of approximately 60

dB. Fortunately, when modulation is applied to the laser

the coherence is substantially suppressed and much smaller

effects are observed in the noise spectrum (Fig. 8(b)).

Nominally, the optical isolators employed in this system

have isolation of approximately 30 dB (see subsection

III-C); consequently the sum of all other return losses

must exceed 20 dB. To ensure this, we employ rotary

mechanical splices in the system [27] with typical return

losses of 40 dB. Fiber return loss is itself in the regime of

32 dB, and is essentially irreducible. This distributed re-

flection has been shown to enhance laser intensity noise

[28]. Because of the presence of the optical isolator, we

have been unable to observe a measurable distortion

penalty associated with the inclusion of fiber in the system.

A second degradation associated with reflections is the

interferometric conversion of laser phase noise to intensity

noise [29]. In the limit where the distance between reflec-

tors is much larger than the coherence length of the laser,

it can be shown that the carrier to noise ratio is limited by

the following inequality [30]:

C ~m2B1

‘< 8 R2B,N
(4)

where R is the geometric mean of the reflectivities, B1 is

the spectral width of the laser due to chirping (HWHM),

B, is the noise bandwidth of an individual TV channel,

and m is the modulation index per channel. Taking typical

values for BI (4 GHz), B. (4 MHz), and m (0.04), we find

that C/N< 55 dB if R > –29 dB.

A final degradation associated with the presence of

optical cavities is the conversion of the FM modulation of

the laser to amplitude distortion [31]. In the regime where

the chirp of the laser under modulation is of the order of

the free spectral range of the interferometer, large contri-

butions ( >20 dB) to both the second- and third-order
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TABLE I

#CH 42

Pmns,cw + 2 dBm optical

Modulation index 0.04 per channel

c/N(4 MHz) 51 dB

CTB 65 dBc

Cso 60 dBc

Noise Sources

Shot Noise 13 pA/(Hz)’/2

RIN 12 pA/(Hz)’/2

Front End Noise 14 pA/(Hz)l’2

The above values represent typical results and are not necessarily
representative of system specifications or best achievable results.

distortion have been observed for cavities where the typi-

cal reflections are of the order of – 20 dB.

III. CONIPONENTS

A. Laser

The noise and distortion requirements of AM analog

systems have resulted in a preference for distributed feed-

back lasers (DFB’s). We find that capped mesa buried

heterostructure (CMBH) lasers [32] at 1.3 pm give excel-

lent results. The fabrication process involves three epitax-

ial growths: a base structure grown on top of a grating by

hydride VPE; blocking layers grown by MOCVD; and a

final “cap” layer grown by hydride VPE. Base structures

grown by hydride VPE have been shown to result in lasers

with good slope efficiency [33]. MOCVD regrowth allows

Fe-doped semi-insulating material to be used for current

blocking layers. An antireflection coating is applied to the
front facet and a high-reflectivity coating (65%) to the rear.

Fig. 9 shows the light–current characteristic of a typical

laser, as well as the first derivative. These data were “taken

under pulsed excitation conditions to eliminate heating

effects which are not important at CATV frequencies.

Ideally, L’ would be perfectly flat above threshold, but in

all practical devices L’ decreases at higher currents. In
principle both the second- and third-order distortion of the

device can be calculated from the L- I curve. The CSO

and the CTB in the i th channel can be obtained from

\ L“Lom
Cso,= J

c,’
and

()
4L!3 2

L1tt L;m2

CTB, =
C,3

(5)

(6)

L-

.I
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g
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Fig. 8.
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(a) Noise spectrum of laser in the presence of optical feedback

a source located approximately 2 m from the laser. (b) NoLse
spectrum of the same laser, with RF input of – 10 dBm at 1.0 GHz.
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:
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Output power as a function of current and its derivatives for a
DFB laser-at 20”C. The drive current 1s produced in 10 ps pulses with

a O 1% duty cycle.

where CZ2,~ is the number of second- and third-order

products in the i th channel respectively. In addition the

power contained in a single second-harmonic tone of the

form 2~ in reflection to the carrier (2 HD/C) is given by

2HD

(1

mL”Lo
—=2010g —

c 4L,2 dBc. (7)
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Equation (7) predicts that the second-order distortion van-

ishes where L“ = O. Operation in the neighborhood of this

point is observed to provide nearly optimum performance

with respect to CSO. Fig. 10 shows the measured CSO in

channel 3 for a 42 channel system and the calculated

2HD/C for the same laser. A modulation index of 0.04 per

channel is assumed in the calculation. The correspondence

between the current at which the best CSO is obtained

(lSYS) and the current (lOP) at which L“ = O is close but not

exact. A correlation plot of ISYSversus 10P is presented in

Fig. 11. It emerges that the contribution of the fourth-order

terms to the distortion causes a calculable elevation of

current at which the CSO is optimized and may explain

the observed results. In addition, the proximity of thresh-

old to the operating current can be a significant source of

distribution. The root mean square modulation index, u,

can be written as

{ AT\ 1/2

H~=m z
2

(8)

It can be shown that the composite distortion will exceed

– 60 dBc for u >0.24 [34]. This effect can also be respon-

sible for forcing operation at higher current. Finally, in

actual applications the laser is biased at an operating point
well above threshold. This causes a small systematic rise in
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Fig. 13. Calculated L ‘“ versus, Im~ for six devices.

iunction temperature relative to the temperature at.
which the pulsed L – I curves of Fig. 9 were taken. These

temperature differences may be partially responsible for

the shift in the best operating point.

It is also important to determine if both the second- and

third-order distortions at I,Y, scale as predicted from (5)

and (6). To assess the validity clf these scaling rules an

experiment was performed in which both CSO and CTB

were measured as a function of modulation current, l,~ti.

From the measured CSO and CTB, values for both L“ and

L ‘“ were calculated from (5) and (6). It is important to

note that neither L“ nor L ‘“ can be easily measured in the

neighborhood of I~Y, because L“ is nearly zero and L ‘“ is

greatly influenced by measurement noise. In Figs. 12 and

13, we plot L“ and L ‘“ respect ively, as calculated from

the measured CSO and CTB, as a function of l~&. Data

from six devices are presented. Some variation of L“ is

observed, indicating that the second-order distortion is not

exclusively determined by L“ at the system operating

point. Again the influence of fourth-order distortion may

be inferred. For five/six devices, and within measurement

error, the calculated L ‘“ is nearly independent of 1~0~,

indicating that there are no significant contributions that

are not accounted for in (6). This may be consistent with

the observation that the value of L ‘“ is not changing
rapidly in the vicinity of I~Y~.
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The preferred DFB lasers for analog applications pos-

sess L – I characteristics similar to that shown in Fig. 9,

and may operate at facet powers >8 mW. Distributions of

the output power and slope efficiency are shown in parts

(a) and (b) of Fig. 14.

DFB lasers also have significantly better noise perfor-

mance than Fabry–Perot lasers. Single-mode lasers exhibit

RIN only a few dB above the shot noise limit. Lasers used

in this project typically have RIN values of – 152 dB/Hz

at 200 MHz. Under similar operating conditions the RIN

of Fabry-Perot lasers is from 5 to 10 dB poorer (an

observation which may be influenced by near-in reflections

in practical optoelectronic packages). As expected, the

RIN decreases at high power, which provides another

reason for striving for increased laser power.

B. Laser Module

The laser module employed is a standard AstrotecTM

package of the type used in high-speed digital telecommu-

nications. A microlensed fiber is used for optical coupling.

In this particular application it is easy to demonstrate that

high coupling efficiency, CE, is important. For systems

dominated by laser noise, shot noise, and receiver noise,

C/N scales as m 2, Lom 2, and L~m 2, respectively. Because

both LO and the derivatives of L with respect to 1 scale

directly with CE, we find that CSO scales as CEO, CEl,

and CE2 for the laser noise, shot noise, and receiver-

dominated noise, respectively, and for fixed C/N. Simi-

larly, CTB scales as CE 0, CE2, and CE4, respectively.

Slope efficiencies for these laser modules average >0.10

mW/mA.

Finally, it is appropriate to consider whether the com-

posite distortions scale properly with the number of con-

tributing products. In Fig. 15, a normal probability plot of

the difference in CSO between channels 3 and 12 is

presented for a large number of devices. A typical differ-

ence of 1.3 dB is observed, whereas the difference in the

number of products is 7 dB. Clearly, some frequency

dependence of the second-order nonlinearity can be in-

ferred. A normal probability plot of the difference between

CTB in channels 3 and 12 is presented in Fig. 16. The

typical difference is 2.3 dB, which is in reasonable agree-

ment with a,~ expected difference of 3 dB based on prod-

uct count.

C. OpticJ Is~Jator

The optics isolator used in these systems has been

previously described [35]. The device is polarization inde-

pendent, has a typical isolation of 30 dB at room tempera-

ture, a typical insertion loss of 1.2 dB, and a typical return

10SS >60 dB.

IV. SUMMARY

In summary, we have demonstrated that the rigorous

signal quality objectives associated with the CATV trunk-

ing application can, in principle, be satisfied with light-

wave technology. ,With our best lasers, we have succeeded

in transmitting 42 carriers over 12 km of fiber while

maintaining a C/N of 52 dB and composite distortions

< – 70 dBc. These results are close to the fundamental

limits established by shot noise and distortion due to

statistical clipping [35]. For the most part, the behavior of

these lasers is reasonably well predicted from the L – I

characteristics and from product count considerations. Ini-

tial studies of component reliability, with regard to both

noise and distortion, have provided encouraging results;

however, a detailed review is beyond the scope of this

paper.

The current transmission technology is suitable for

CATV trunking applications because the cost of an indi-
vidual link may be shared over >500 subscribers. Eco-

nomic studies have shown that the cost of AM lightwave

hardware is often (but not always) less than that of con-

ventional alternatives for system upgrades. Furthermore,

the degradations to signal quality encountered in the dis-

tribution part of the CATV plant typically account for

roughly 50% of the total degradation. In consequence,

improvements in the trunking plant have a bounded im-

pact on the improvement observed by the subscriber. Fur-

ther reductions in noise and distortion are still clearly

productive. This is especially so if one considers the more

stringent signal quality objectives for HDTV; however,



LIPSON et u[.: HIGH-FIDELITY LIGHTWAVE TRANSMISSION 491

*
**** **

*
●☛

✎ ● ☛

I I I I I
-2 -1 0 1 2

Number of Sigmas

Fig. 15. Normal probability plot of the difference between CSO in channel 12 and channel 3 (700 devices).

1% 570 10% so~o 90% 99%
10 - I -

*
●

● *
**

I
●****

-5

-10 I I I I I

-3 -2 -1 0 1 2

Number of Sigmas

Fig. 16. Normal probabdlty plot of the difference between CTB m channel 3 and in channel 1’2 (700 devices).

because further penetration into the distribution plant also acknowledge the highly significant contributions of J.

depends on radical reductions in cost, this must be a major Fayewicz and K. Weidner in establishing appropriate man-

focus for further work. ufacturing procedures.
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