IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUEFS, VOL. 38, NO 5. MAY 1990 483

High-Fidelity Lightwave Transmission of
Multiple AM-VSB NTSC Signals

JAN LIPSON, L. CHAINULU UPADHYAYULA, SENIOR MEMBER, IEEE,
SUN-YUAN HUANG, MEMBER, IEEg, CHARLES B. ROXLO,
E.J. FLYNN, PAUL M. NITZSCHE, CARL J. MCGRATH,
GERALD L. FENDERSON, anp MARK S. SCHAEFER

(Invited Paper)

Abstract —In this paper we report on progress towards developing AM
lightwave links for the transmission of multiple TV signals. While the
signal quality objectives and transmission distances are appropriate for the
CATV trunking application, the technology is ultimately expected to have
applicability to the distribution of video signals in the subscriber loop.
Highly linear 1.3 pm DFB lasers, designed expressly for analog require-
ments, were used to transmit 42 continuous wave carriers according to the
standard U.S. CATYV frequency plan. For our best lasers, when evaluated
over 12 km of fiber, carrier to noise, composite second-order distortion,
and composite triple beat were >52 dB, > 70 dBc, and > 70 dBc,
respectively. The relationship between measurements with CW carriers
and actual video signals is discussed. System design rules are offered.
Properties that lead to superior analog performance are discussed. Data
from > 700 links indicate that composite third-order distortion generally
scales with product count but that composite second-order distortion has a
significant frequency-dependent component.

I. INTRODUCTION

S LIGHTWAVE technology has begun to penetrate
Acloser to the subscriber, there has been an intensive
interest in the cost-effective transmission of large numbers
of TV signals. Centrally switched wide-band distribution
systems [1]-{5] possess many attractive features but have
initially proven too expensive for widespread deployment.
Broadcast architectures have been proposed and/or
demonstrated using digital [6], subcarrier FSK [2], [3], [7].
PSK [8], FM [9], [10], and AM [11] signal formats. Each
option may be judged according to the following criteria:

1) cost

2) compatibility with existing equipment

3) signal quality

4) possibility of gradual introduction (entry strategy)
S) flexibility (ease of upgrade).

Digital systems typically suffer high costs associated with
the conversion of the signal to the required AM format at
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the receiver. While such costs can be ameliorated to some
extent by the use of time division multiplexing, inflexibility
in the provision of additional channels may arise. Subcar-
rier FM and FSK systems are, in some embodiments,
likewise subject to the high costs of converting each indi-
vidual channel to AM. Again, conversion costs may be
reduced if the signal is transported without demodulation
directly to the subscriber. Once on the subscriber’s
premises, it is generally necessary to recover only one AM
channel per television receiver. While there are no obvious
technical deficiencies associated with such a scheme, high
conversion costs are avoided only if the distribution part
of the system is deployed simultaneously with the trunking
or feeder plant. A more graceful strategy for introduction
of lightwave technology into the loop is to begin the
deployment in those parts of the system where the cost is
shared by numerous subscribers. Introduction into the
most cost-intensive parts of the plant occurs when suffi-
cient production experience has enabled the supplier to
achieve satisfactory costs.

The principal disadvantage of AM transmission has
been the fragility of the signal with respect to noise and
distortion. Until very recently, nonlinearities in the laser
sources prevented the transmission of a sufficient number
of channels with adequate signal quality. A number of
workers have endeavored to evade this restriction through
the use of linearizing techniques [12]-[15]; however the
additional complication and cost may be disadvantageous
if a suitably linear laser is available. In this paper we
describe a system in which 40-80 channels of AM-VSB
NTSC signals can be transmitted over 12 km of fiber, with
negligible impairment in the perceived quality of the sig-
nal. The modulation index is adjusted so that the carrier to
noise ratio (C/N) always exceeds 50 dB. The transmitter
makes use of a highly linear 1.3 pm DFB laser in conjunc-
tion with suitable ancillary circuitry. Numerous systems of
this type have been deployed in commercial CATV trunk-
ing applications, and they are gaining widespread accep-
tance in the industry. The organization of this paper is as
follows. In Section II the architecture of the link is dis-
cussed. Included is a discussion of optical reflections as
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well as a comparison of test results using CW carriers and
live TV signals. Section III contains a description of the
devices. Consideration is also given to laser packages and
optical isolators. Finally, both the current status and the
potential evolution of analog technology are summarized
in Section IV.

II. CATYV SYSTEM CONSIDERATIONS
A. Link Architecture

A simple model of a fiber-optic CATV trunk system is
shown in Fig. 1. The head-end electronics are modeled as
N (N being the number of channels) video modulators,
each converting a baseband video and audio signal to a
AM-VSB signal at a frequency f,. The individual outputs
are passively combined in several stages to form the com-
posite spectrum. A typical head-end spectrum begins at 55
MHz (channel 2) and may progress to frequencies as high
as 550 MHz for an 80 channel system.

Several CATV frequency plans are in use in the United
States, all having the same basic spectral structure depicted
in Fig. 2. Unmodulated carriers, as generated by the most
commonly used test instrumentation, are shown represent-
ing the carrier frequency of each CATV channel. Carriers
are spaced at 6 MHz increments with predetermined gaps
for FM broadcast and certain communication channels.

As a broad-band transmission vehicle, AM links for
CATV applications are characterized by the following
figures of merit [16]:

C/N  Carrier to noise ratio: the ratio of the peak
carrier power for a given channel to the noise
floor near the carrier, assuming a noise band-
width of 4 MHz.

Composite triple beat: the ratio of the peak
carrier to the peak power in the composite
third-order intermodulation tone, which, for
the frequency plan used in these studies, occurs
at the carrier frequency.

Composite second order: the ratio of the peak
carrier to the peak power in the composite
second-order intermodulation tone. For stan-
dard and IRC (incrementally related carriers)
frequency plans, the CSO appears at the carrier
frequency +1.25 MHz. For the HRC (harmon-
ically related carriers) frequency plan, the CSO
beats appear under the carriers, as with CTB.

CTB

CSO

We will examine C/N and intermodulation performance
separately, because the noise performance of most compo-
nents is well understood and may be accurately modeled,
whereas intermodulation performance must be character-
ized on each individual transmitter /receiver.

B. C/N— Noise Sources in a Fiber-Optic AM Link

A simplified model [17] of the broad-band link is shown
in Fig. 3, for noise performance considerations. There are
three dominant sources of noise, all of which are modeled
as current sources.
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Fig. 1. Schematic for a CATV system utilizing an AM fiber trunk.

1) Froni-End Noise: For this analysis, the noise power
from the preamplifier is converted to equivalent input
current and expressed in pA/(Hz)"/% In general, the
equivalent input noise current is not flat across the band
and will vary with temperature and load conditions. The
noise performance of the preamplifier used in these
broad-band applications is typically in the range 12-16
pA/(Hz)'/2.

2) Shot Noise: The quantum or shot noise, [, formed
in an ideal square law detector is given by

- A?
Is = 28111;

z

(1)

where e is the electronic charge and [, is the detected
current. Over the frequency range of interest, the shot
noise is essentially flat.

3) Relative Intensity Noise: The final dominant noise
source in the AM system is laser intensity noise as charac-
terized by RIN in dB/Hz [18]. The apparent intensity
noise at the receiver consists of noise intrinsic to the laser
(quantum effects in electron to photon conversion, mode
partitioning, etc.) and extrinsic effects which may be caused
by reflections and dispersion. Reflection effects are dis-
cussed in subsection II-E. For AM trunking applications
an RIN of < —150 dB/Hz is normally required.

C. Intermodulation Noise — CTB and CSO

The theory and mathematics of intermodulation noise
are well developed [19], having become particularly impor-
tant in CATV applications [20] when channel loads on
coaxial cable exceed the original 13 off-air channels.

The linearity of lasers is discussed extensively in subsec-
tion ITI-A. The applied modulation current to the laser is
given by

1(t) =1, +(Iy—Iy) 2 mcos(2nfi+¢;,)  (2)
=1

where 1, is the dc bias current, [, is the threshold current
of the laser, m, is the modulation index for the ith carrier,
and ¢, is the phase of the ith carrier. The light output,
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Fig. 2. Frequency spectrum produced by a 42 channel multicarrier test source used in CATV measurements.
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Fig. 3. Equivalent circuits for transmitters and receivers.

L(#), in response to the modulation is given by

d"L
)
L) =Lyt &1 -1]" (3)

1=1 ‘

where L, is the power at the dc bias current. If terms
beyond i = 3 are negligible, we will expect power to appear
at f;+f, and f,+ f * f;. In addition, other elements in
the system may have nonlinear transfer characteristics
such as the laser driver, the p-i-n detector, and receiver
amplifiers, We find, however, that typical links are domi-
nated by laser nonlinearity.

Each composite second- or third-order beat is made up
of tones of equal amplitude assuming that the generating
spectrum is flat. If the nonlinearity is frequency dependent
[21], [22], the contributions from each tone can still be
equal, provided that the amplitude of the tone depends
only on the resultant frequency and not on the individual
frequencies of which it is composed. If we assume that the
tones are uncorrelated in phase and that the nonlinearity is
frequency independent, then the expected channel to chan-
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Fig. 4. 10 log (number of second-order intermodulation products) for a

42 channel system.

nel relative differences in intermodulation performance
will follow a 10 log(N,) scaling, where N, is the number of
second- or third-order products. In Figs. 4 and 5, we show
a plot of the predicted relative second-order and third-order
intermodulation performance for 42 CATV channels. It
can be seen that CSO performance is expected to be most
critical at both the high and low ends of the band, where
product counts are highest, whereas CTB is most signifi-
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Fig. 5. 10 log (number of third-order intermodulation products) for a

42 channel system.

cant in the middle of the band, where third-order product
counts are highest.

D. System Performance

A typical hardware implementation for CATV applica-
tions includes a laser transmitter with associated power
supplies, bias circuits, thermoelectric cooler control cir-
cuits, and RF drive stages. The optical detector (p-i-n),
preamplifier, postamplifier, and power supply are mounted
in a rugged outside cable plant housing suitable for general
deployment in CATV networks.

A diagram of a typical evaluation arrangement for the
link is shown in Fig. 6. The band-pass filter, amplifiers,
and variable attenuators are used to optimize the perfor-
mance of the spectrum analyzer with respect to linearity
and noise contribution (i.e., dynamic range). Using
NCTA-recommended procedures, typical results shown in
Fig. 7 were achieved. Data from a typical 42 channel link
with out-of-plant losses of 5 dB (12 km fiber) are analyzed
in Table I, where all the noise contributions are reduced to
an equivalent input noise current. Performance superior to
the typical values summarized in Table I can be obtained
with our best lasers. For the best links, we have achieved
C/N>52 dB, CSO > 70 dBc, and CTB > 70 dBc. When
the matrix generator in Fig. 6 is replaced by an actual
CATV head end with live video modulation, the carrier
amplitude is reduced by an average of 6 dB. This results in
an improvement in measured CTB of approximately 12 dB
and an improvement in CSO of approximately 6-10 dB.
Because these levels of performance are well below the
level at which an impairment is typically perceived, the
modulation index of the device is usually increased to
provide a more optimum trade-off of C/N and intermodu-
lation distortion.
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E. Enhanced Noise from Optical Reflections

The adverse effects of optical feedback on semiconduc-
tor lasers has been studied intensively with respect to
degradations in the optical spectrum {23] and noise perfor-
mance [24], [25]. Reference [25] is particularly useful in
that the degradation of RIN as a function of the polariza-
tion of the optical feedback is also explored. Potential
sources of reflections include the laser package optics, the
optical isolator, connectors, splices, the receiver, and
Rayleigh backscattering from the fiber itself [26]. The
effect of optical feedback on laser relative intensity noise
does not become negligible until a total return loss of > 50
dB is obtained when typical distances to the source are of
the order of several meters [25]. In this context, return loss
is referenced to the power emerging from the laser facet
and includes coupling and other losses. In addition, the
noise spectrum acquires periodic peaks at frequencies cor-
responding to an inverse round-trip time between the laser
and the source of the optical feedback. This phenomenon
is shown in Fig. 8(a), where the periodicity of the peaks in
the noise spectrum corresponds to the location of an
optical isolator having a return loss of approximately 60
dB. Fortunately, when modulation is applied to the laser
the coherence is substantially suppressed and much smaller
effects are observed in the noise spectrum (Fig. 8(b)).

Nominally, the optical isolators employed in this system
have isolation of approximately 30 dB (see subsection
ITI1-C); consequently the sum of all other return losses
must exceed 20 dB. To ensure this, we employ rotary
mechanical splices in the system [27] with typical return
losses of 40 dB. Fiber return loss is itself in the regime of
32 dB, and is essentially irreducible. This distributed re-
flection has been shown to enhance laser intensity noise
[28]. Because of the presence of the optical isolator, we
have been unable to observe a measurable distortion
penalty associated with the inclusion of fiber in the system.

A second degradation associated with reflections is the
interferometric conversion of laser phase noise to intensity
noise [29]. In the limit where the distance between reflec-
tors is much larger than the coherence length of the laser,
it can be shown that the carrier to noise ratio is limited by
the following inequality [30]:

C 27 m* B,

N"T§ & B, 4)
where R is the geometric mean of the reflectivities, B, is
the spectral width of the laser due to chirping (HWHM),
B, is the noise bandwidth of an individual TV channel,
and m is the modulation index per channel. Taking typical
values for B; (4 GHz), B, (4 MHz), and m (0.04), we find
that C/N <55 dB if R> —29 dB.

A final degradation associated with the presence of
optical cavities is the conversion of the FM modulation of
the laser to amplitude distortion [31]. In the regime where
the chirp of the laser under modulation is of the order of
the free spectral range of the interferometer, large contri-
butions ( > 20 dB) to both the second- and third-order
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TABLE 1

#CH 42

+ 2 dBm optical

Plxans. oW

Modulation index 0.04 per channel

C/N(4 MHz) 51dB
CTB 65 dBc
CSO 60 dBc

Noise Sources
Shot Noise 13 pA/(Hz)'/?
RIN 12 pA/(Hz)'/?

Front End Noise 14 pA/(Hz)'/?

The above values represent typical results and are not necessarily
representative of system specifications or best achievable results.

distortion have been observed for cavities where the typi-
cal reflections are of the order of —20 dB.

III. COMPONENTS
A. Laser

The noise and distortion requirements of AM analog
systems have resulted in a preference for distributed feed-
back lasers (DFB’s). We find that capped mesa buried
heterostructure (CMBH) lasers [32] at 1.3 pm give excel-
lent results. The fabrication process involves three epitax-
ial growths: a base structure grown on top of a grating by
hydride VPE; blocking layers grown by MOCVD; and a
final “cap” layer grown by hydride VPE. Base structures
grown by hydride VPE have been shown to result in lasers
with good slope efficiency [33]. MOCVD regrowth allows
Fe-doped semi-insulating material to be used for current
blocking layers. An antireflection coating is applied to the
front facet and a high-reflectivity coating (65%) to the rear.

Fig. 9 shows the light—current characteristic of a typical
laser, as well as the first derivative. These data were taken
under pulsed excitation conditions to eliminate heating
effects which are not important at CATV frequencies.
Ideally, L’ would be perfectly flat above threshold, but in
all practical devices L’ decreases at higher currents. In
principle both the second- and third-order distortion of the
device can be calculated from the L-1I curve. The CSO
and the CTB in the ith channel can be obtained from
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Fig. 8. (a) Noise spectrum of laser in the presence of optical feedback

from a source located approximately 2 m from the laser. (b) Noise
spectrum of the same laser, with RF input of —10 dBm at 1.0 GHz.
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DFB laser at 20°C. The drive current 1s produced in 10 ps pulses with
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where C,; is the number of second- and third-order
products in the ith channel respectively. In addition the
power contained in a single second-harmonic tone of the
form 2f in reflection to the carrier (2HD /C) is given by

MD o (mLLyy
C - Og( 4L/2 ) C. (7)
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Equation (7) predicts that the second-order distortion van-
ishes where L” = 0. Operation in the neighborhood of this
point is observed to provide nearly optimum performance
with respect to CSO. Fig. 10 shows the measured CSO in
channel 3 for a 42 channel system and the calculated
2HD /C for the same laser. A modulation index of 0.04 per
channel is assumed in the calculation. The correspondence
between the current at which the best CSO is obtained
(I4s) and the current (/) at which L”=01is close but not
exact. A correlation plot of I versus I, is presented in
Fig. 11. It emerges that the contribution of the fourth-order
terms to the distortion causes a calculable elevation of
current at which the CSO is optimized and may explain
the observed results. In addition, the proximity of thresh-
old to the operating current can be a significant source of
distribution. The root mean square modulation index, u,

can be written as
N\ 1/2
u=m ( - ) .

. (®)

It can be shown that the composite distortion will exceed
— 60 dBc for u > 0.24 [34]. This effect can also be respon-
sible for forcing operation at higher current. Finally, in
actual applications the laser is biased at an operating point
well above threshold. This causes a small systematic rise in
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the junction temperature relative to the temperature at
which the pulsed L—T curves of Fig. 9 were taken. These
temperature differences may be partially responsible for
the shift in the best operating point.

It is also important to determine if both the second- and
third-order distortions at I scale as predicted from (5)
and (6). To assess the validity of these scaling rules an
experiment was performed in which both CSO and CTB
were measured as a function of modulation current, I 4.
From the measured CSO and CTB, values for both L” and
L were calculated from (5) and (6). It is important to
note that neither L” nor L” can be easily measured in the
neighborhood of I, because L” is nearly zero and L” is
greatly influenced by measurement noise. In Figs. 12 and
13, we plot L” and L respectively, as calculated from
the measured CSO and CTB, as a function of I, 4. Data
from six devices are presented. Some variation of L” is
observed, indicating that the second-order distortion is not
exclusively determined by L” at the system operating
point. Again the influence of fourth-order distortion may
be inferred. For five/six devices, and within measurement
error, the calculated L’ is nearly independent of [ 4,
indicating that there are no significant contributions that
are not accounted for in (6). This may be consistent with
the observation that the value of L’ is not changing
rapidly in the vicinity of Iy
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The preferred DFB lasers for analog applications pos-
sess LTI characteristics similar to that shown in Fig. 9,
and may operate at facet powers > 8 mW. Distributions of
the output power and slope efficiency are shown in parts
(a) and (b) of Fig. 14.

DFB lasers also have significantly better noise perfor-
mance than Fabry—Perot lasers. Single-mode lasers exhibit
RIN only a few dB above the shot noise limit. Lasers used
in this project typically have RIN values of —~152 dB/Hz
at 200 MHz. Under similar operating conditions the RIN
of Fabry-Perot lasers is from 5 to 10 dB poorer (an
observation which may be influenced by near-in reflections
in practical optoelectronic packages). As expected, the
RIN decreases at high power, which provides another
reason for striving for increased laser power.

B. Laser Module

The laser module employed is a standard Astrotec™
package of the type used in high-speed digital telecommu-
nications. A microlensed fiber is used for optical coupling.
In this particular application it is easy to demonstrate that
high coupling efficiency, CE, is important. For systems
dominated by laser noise, shot noise, and receiver noise,
C/N scales as m?, L,ym?, and L2m?, respectively. Because
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both L, and the derivatives of L with respect to I scale
directly with CE, we find that CSO scales as CE®, CE!,
and CE? for the laser noise, shot noise, and receiver-
dominated noise, respectively, and for fixed C/N. Simi-
larly, CTB scales as CE® CE2?, and CE* respectively.
Slope efficiencies for these laser modules average > 0.10
mW /mA.

Finally, it is appropriate to consider whether the com-
posite distortions scale properly with the number of con-
tributing products. In Fig. 15, a normal probability plot of
the difference in CSO between channels 3 and 12 is
presented for a large number of devices. A typical differ-
ence of 1.3 dB is observed, whereas the difference in the
number of products is 7 dB. Clearly, some frequency
dependence of the second-order nonlinearity can be in-
ferred. A normal probability plot of the difference between
CTB in channels 3 and 12 is presented in Fig. 16. The
typical difference is 2.3 dB, which is in reasonable agree-
ment with an expected difference of 3 dB based on prod-
uct count.

C. Optical Isolator

The optica: isolator used in these systems has been
previously described [35]. The device is polarization inde-
pendent, has a typical isolation of 30 dB at room tempera-
ture, a typical insertion loss of 1.2 dB, and a typical return
loss > 60 dB.

IV. SuMMARY

In summary, we have demonstrated that the rigorous
signal quality objectives associated with the CATV trunk-
ing application can, in principle, be satisfied with light-
wave technology. With our best lasers, we have succeeded
in transmitting 42 carriers over 12 km of fiber while
maintaining a C/N of 52 dB and composite distortions
< =70 dBc. These results are close to the fundamental
limits established by shot noise and distortion due to
statistical clipping [35]. For the most part, the behavior of
these lasers is reasonably well predicted from the L-T1
characteristics and from product count considerations. Ini-
tial studies of component reliability, with regard to both
noise and distortion, have provided encouraging results;
however, a detailed review is beyond the scope of this
paper.

The current transmission technology is suitable for
CATYV trunking applications because the cost of an indi-
vidual link may be shared over > 500 subscribers. Eco-
nomic studies have shown that the cost of AM lightwave
hardware is often (but not always) less than that of con-
ventional alternatives for system upgrades. Furthermore,
the degradations to signal quality encountered in the dis-
tribution part of the CATV plant typically account for
roughly 50% of the total degradation. In consequence,
improvements in the trunking plant have a bounded im-
pact on the improvement observed by the subscriber. Fur-
ther reductions in noise and distortion are still clearly
productive. This is especially so if one considers the more
stringent signal quality objectives for HDTV; however,
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because further penetration into the distribution plant also acknowledge the highly significant contributions of J.
depends on radical reductions in cost, this must be a major ~Fayewicz and K. Weidner in establishing appropriate man-

focus for further work. ufacturing procedures.
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